Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
N Engl J Med ; 388(7): 609-620, 2023 02 16.
Article in English | MEDLINE | ID: covidwho-2258655

ABSTRACT

BACKGROUND: Respiratory syncytial virus (RSV) can cause serious lower respiratory tract disease in older adults, but no licensed RSV vaccine currently exists. An adenovirus serotype 26 RSV vector encoding a prefusion F (preF) protein (Ad26.RSV.preF) in combination with RSV preF protein was previously shown to elicit humoral and cellular immunogenicity. METHODS: We conducted a randomized, double-blind, placebo-controlled, phase 2b, proof-of-concept trial to evaluate the efficacy, immunogenicity, and safety of an Ad26.RSV.preF-RSV preF protein vaccine. Adults who were 65 years of age or older were randomly assigned in a 1:1 ratio to receive vaccine or placebo. The primary end point was the first occurrence of RSV-mediated lower respiratory tract disease that met one of three case definitions: three or more symptoms of lower respiratory tract infection (definition 1), two or more symptoms of lower respiratory tract infection (definition 2), and either two or more symptoms of lower respiratory tract infection or one or more symptoms of lower respiratory tract infection plus at least one systemic symptom (definition 3). RESULTS: Overall, 5782 participants were enrolled and received an injection. RSV-mediated lower respiratory tract disease meeting case definitions 1, 2, and 3 occurred in 6, 10, and 13 vaccine recipients and in 30, 40, and 43 placebo recipients, respectively. Vaccine efficacy was 80.0% (94.2% confidence interval [CI], 52.2 to 92.9), 75.0% (94.2% CI, 50.1 to 88.5), and 69.8% (94.2% CI, 43.7 to 84.7) for case definitions 1, 2, and 3, respectively. After vaccination, RSV A2 neutralizing antibody titers increased by a factor of 12.1 from baseline to day 15, a finding consistent with other immunogenicity measures. Percentages of participants with solicited local and systemic adverse events were higher in the vaccine group than in the placebo group (local, 37.9% vs. 8.4%; systemic, 41.4% vs. 16.4%); most adverse events were mild to moderate in severity. The frequency of serious adverse events was similar in the vaccine group and the placebo group (4.6% and 4.7%, respectively). CONCLUSIONS: In adults 65 years of age or older, Ad26.RSV.preF-RSV preF protein vaccine was immunogenic and prevented RSV-mediated lower respiratory tract disease. (Funded by Janssen Vaccines and Prevention; CYPRESS ClinicalTrials.gov number, NCT03982199.).


Subject(s)
Antibodies, Neutralizing , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Aged , Humans , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Double-Blind Method , Respiratory Syncytial Virus Infections/blood , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/adverse effects , Respiratory Syncytial Virus Vaccines/therapeutic use , Respiratory Syncytial Virus, Human/immunology , Respiratory Tract Infections/blood , Respiratory Tract Infections/immunology , Respiratory Tract Infections/prevention & control , Vaccine Efficacy , Immunogenicity, Vaccine/immunology , Treatment Outcome
3.
PLoS Pathog ; 16(10): e1008942, 2020 10.
Article in English | MEDLINE | ID: covidwho-2021974

ABSTRACT

Human metapneumovirus (hMPV) is a leading cause of viral respiratory infection in children, and can cause severe lower respiratory tract infection in infants, the elderly, and immunocompromised patients. However, there remain no licensed vaccines or specific treatments for hMPV infection. Although the hMPV fusion (F) protein is the sole target of neutralizing antibodies, the immunological properties of hMPV F remain poorly understood. To further define the humoral immune response to the hMPV F protein, we isolated two new human monoclonal antibodies (mAbs), MPV458 and MPV465. Both mAbs are neutralizing in vitro and were determined to target a unique antigenic site using competitive biolayer interferometry. We determined both MPV458 and MPV465 have higher affinity for monomeric hMPV F than trimeric hMPV F. MPV458 was co-crystallized with hMPV F, and the mAb primarily interacts with an alpha helix on the F2 region of the hMPV F protein. Surprisingly, the major epitope for MPV458 lies within the trimeric interface of the hMPV F protein, suggesting significant breathing of the hMPV F protein must occur for host immune recognition of the novel epitope. In addition, significant glycan interactions were observed with a somatically mutated light chain framework residue. The data presented identifies a novel epitope on the hMPV F protein for epitope-based vaccine design, and illustrates a new mechanism for human antibody neutralization of viral glycoproteins.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Pneumovirus/immunology , Antibodies, Neutralizing/pharmacology , Epitopes/immunology , Humans , Metapneumovirus/immunology , Paramyxoviridae Infections/virology , Respiratory Syncytial Virus, Human/immunology , Viral Fusion Proteins/immunology
6.
N Engl J Med ; 386(17): 1615-1626, 2022 04 28.
Article in English | MEDLINE | ID: covidwho-1815678

ABSTRACT

BACKGROUND: Respiratory syncytial virus (RSV), a major cause of illness and death in infants worldwide, could be prevented by vaccination during pregnancy. The efficacy, immunogenicity, and safety of a bivalent RSV prefusion F protein-based (RSVpreF) vaccine in pregnant women and their infants are uncertain. METHODS: In a phase 2b trial, we randomly assigned pregnant women, at 24 through 36 weeks' gestation, to receive either 120 or 240 µg of RSVpreF vaccine (with or without aluminum hydroxide) or placebo. The trial included safety end points and immunogenicity end points that, in this interim analysis, included 50% titers of RSV A, B, and combined A/B neutralizing antibodies in maternal serum at delivery and in umbilical-cord blood, as well as maternal-to-infant transplacental transfer ratios. RESULTS: This planned interim analysis included 406 women and 403 infants; 327 women (80.5%) received RSVpreF vaccine. Most postvaccination reactions were mild to moderate; the incidence of local reactions was higher among women who received RSVpreF vaccine containing aluminum hydroxide than among those who received RSVpreF vaccine without aluminum hydroxide. The incidences of adverse events in the women and infants were similar in the vaccine and placebo groups; the type and frequency of these events were consistent with the background incidences among pregnant women and infants. The geometric mean ratios of 50% neutralizing titers between the infants of vaccine recipients and those of placebo recipients ranged from 9.7 to 11.7 among those with RSV A neutralizing antibodies and from 13.6 to 16.8 among those with RSV B neutralizing antibodies. Transplacental neutralizing antibody transfer ratios ranged from 1.41 to 2.10 and were higher with nonaluminum formulations than with aluminum formulations. Across the range of assessed gestational ages, infants of women who were immunized had similar titers in umbilical-cord blood and similar transplacental transfer ratios. CONCLUSIONS: RSVpreF vaccine elicited neutralizing antibody responses with efficient transplacental transfer and without evident safety concerns. (Funded by Pfizer; ClinicalTrials.gov number, NCT04032093.).


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Viral Fusion Proteins , Aluminum Hydroxide/adverse effects , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Female , Humans , Infant , Pregnancy , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/adverse effects , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus Vaccines/therapeutic use , Respiratory Syncytial Virus, Human/immunology , Vaccination , Viral Fusion Proteins/immunology
7.
Viruses ; 13(12)2021 12 10.
Article in English | MEDLINE | ID: covidwho-1591709

ABSTRACT

RSV is a leading cause of respiratory tract disease in infants and the elderly. RSV has limited therapeutic interventions and no FDA-approved vaccine. Gaps in our understanding of virus-host interactions and immunity contribute to the lack of biological countermeasures. This review updates the current understanding of RSV immunity and immunopathology with a focus on interferon responses, animal modeling, and correlates of protection.


Subject(s)
Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/immunology , Adaptive Immunity , Animals , Disease Models, Animal , Humans , Immunity, Innate , Interferons/immunology , Interferons/metabolism , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/physiology
8.
Sci Rep ; 11(1): 23741, 2021 12 09.
Article in English | MEDLINE | ID: covidwho-1565734

ABSTRACT

The mechanisms explaining excess morbidity and mortality in respiratory infections among males are poorly understood. Innate immune responses are critical in protection against respiratory virus infections. We hypothesised that innate immune responses to respiratory viruses may be deficient in males. We stimulated peripheral blood mononuclear cells from 345 participants at age 16 years in a population-based birth cohort with three live respiratory viruses (rhinoviruses A16 and A1, and respiratory syncytial virus) and two viral mimics (R848 and CpG-A, to mimic responses to SARS-CoV-2) and investigated sex differences in interferon (IFN) responses. IFN-α responses to all viruses and stimuli were 1.34-2.06-fold lower in males than females (P = 0.018 - < 0.001). IFN-ß, IFN-γ and IFN-induced chemokines were also deficient in males across all stimuli/viruses. Healthcare records revealed 12.1% of males and 6.6% of females were hospitalized with respiratory infections in infancy (P = 0.017). In conclusion, impaired innate anti-viral immunity in males likely results in high male morbidity and mortality from respiratory virus infections.


Subject(s)
Imidazoles/immunology , Immunity, Innate , Oligodeoxyribonucleotides/immunology , Picornaviridae Infections/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus, Human/immunology , Rhinovirus/immunology , Adolescent , Birth Cohort , Cohort Studies , Female , Humans , Interferons/immunology , Interferons/metabolism , Leukocytes, Mononuclear/immunology , Male , Picornaviridae Infections/mortality , Picornaviridae Infections/virology , Respiratory Syncytial Virus Infections/mortality , Respiratory Syncytial Virus Infections/virology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/mortality , Respiratory Tract Infections/virology , SARS-CoV-2 , Sex Factors
9.
Viruses ; 12(8)2020 07 27.
Article in English | MEDLINE | ID: covidwho-1512665

ABSTRACT

Acute viral bronchiolitis causes significant mortality in the developing world, is the number one cause of infant hospitalisation in the developed world, and is associated with the later development of chronic lung diseases such as asthma. A vaccine against respiratory syncytial virus (RSV), the leading cause of viral bronchiolitis in infancy, remains elusive, and hence new therapeutic modalities are needed to limit disease severity. However, much remains unknown about the underlying pathogenic mechanisms. Neutrophilic inflammation is the predominant phenotype observed in infants with both mild and severe disease, however, a clear understanding of the beneficial and deleterious effects of neutrophils is lacking. In this review, we describe the multifaceted roles of neutrophils in host defence and antiviral immunity, consider their contribution to bronchiolitis pathogenesis, and discuss whether new approaches that target neutrophil effector functions will be suitable for treating severe RSV bronchiolitis.


Subject(s)
Bronchiolitis, Viral/immunology , Bronchiolitis, Viral/pathology , Immunity, Innate , Neutrophils/immunology , Respiratory Syncytial Virus Infections/pathology , Respiratory Syncytial Virus, Human/immunology , Acute Disease , Animals , Clinical Trials as Topic , Humans , Inflammation/virology , Lung/virology , Mice , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus, Human/pathogenicity
10.
Viruses ; 13(10)2021 09 28.
Article in English | MEDLINE | ID: covidwho-1481007

ABSTRACT

Nipah virus (NiV) and respiratory syncytial virus (RSV) possess two surface glycoproteins involved in cellular attachment and membrane fusion, both of which are potential targets for vaccines. The majority of vaccine development is focused on the attachment (G) protein of NiV, which is the immunodominant target. In contrast, the fusion (F) protein of RSV is the main target in vaccine development. Despite this, neutralising epitopes have been described in NiV F and RSV G, making them alternate targets for vaccine design. Through rational design, we have developed a vaccine strategy applicable to phylogenetically divergent NiV and RSV that comprises both the F and G proteins (FxG). In a mouse immunization model, we found that NiV FxG elicited an improved immune response capable of neutralising pseudotyped NiV and a NiV mutant that is able to escape neutralisation by two known F-specific antibodies. RSV FxG elicited an immune response against both F and G and was able to neutralise RSV; however, this was inferior to the immune response of F alone. Despite this, RSV FxG elicited a response against a known protective epitope within G that is conserved across RSV A and B subgroups, which may provide additional protection in vivo. We conclude that inclusion of F and G antigens within a single design provides a streamlined subunit vaccine strategy against both emerging and established pathogens, with the potential for broader protection against NiV.


Subject(s)
Antibodies, Viral/blood , Henipavirus Infections/prevention & control , Nipah Virus/immunology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/immunology , Vaccine Development/methods , Viral Envelope Proteins/immunology , Animals , Antibodies, Viral/immunology , Female , Humans , Mice , Mice, Inbred BALB C , Respiratory Syncytial Virus Vaccines/administration & dosage , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology , Viral Envelope Proteins/administration & dosage , Viral Envelope Proteins/genetics , Viral Fusion Proteins/immunology
11.
Front Immunol ; 12: 683902, 2021.
Article in English | MEDLINE | ID: covidwho-1282386

ABSTRACT

Respiratory syncytial virus (RSV) is a public health concern that causes acute lower respiratory tract infection. So far, no vaccine candidate under development has reached the market and the only licensed product to prevent RSV infection in at-risk infants and young children is a monoclonal antibody (Synagis®). Polyclonal human anti-RSV hyper-immune immunoglobulins (Igs) have also been used but were superseded by Synagis® owing to their low titer and large infused volume. Here we report a new drug class of immunoglobulins, derived from human non hyper-immune plasma that was generated by an innovative bioprocess, called Ig cracking, combining expertises in plasma-derived products and affinity chromatography. By using the RSV fusion protein (F protein) as ligand, the Ig cracking process provided a purified and concentrated product, designated hyper-enriched anti-RSV IgG, composed of at least 15-20% target-specific-antibodies from normal plasma. These anti-RSV Ig displayed a strong in vitro neutralization effect on RSV replication. Moreover, we described a novel prophylactic strategy based on local nasal administration of this unique hyper-enriched anti-RSV IgG solution using a mouse model of infection with bioluminescent RSV. Our results demonstrated that very low doses of hyper-enriched anti-RSV IgG can be administered locally to ensure rapid and efficient inhibition of virus infection. Thus, the general hyper-enriched Ig concept appeared a promising approach and might provide solutions to prevent and treat other infectious diseases. IMPORTANCE: Respiratory Syncytial Virus (RSV) is the major cause of acute lower respiratory infections in children, and is also recognized as a cause of morbidity in the elderly. There are still no vaccines and no efficient antiviral therapy against this virus. Here, we described an approach of passive immunization with a new class of hyper-enriched anti-RSV immunoglobulins (Ig) manufactured from human normal plasma. This new class of immunoglobulin plasma derived product is generated by an innovative bioprocess, called Ig cracking, which requires a combination of expertise in both plasma derived products and affinity chromatography. The strong efficacy in a small volume of these hyper-enriched anti-RSV IgG to inhibit the viral infection was demonstrated using a mouse model. This new class of immunoglobulin plasma-derived products could be applied to other pathogens to address specific therapeutic needs in the field of infectious diseases or even pandemics, such as COVID-19.


Subject(s)
Antibodies, Viral/administration & dosage , Immunization, Passive , Immunoglobulin G/administration & dosage , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus, Human/immunology , Administration, Intranasal , Animals , Antibodies, Viral/immunology , Antibodies, Viral/isolation & purification , Disease Models, Animal , Humans , Immunoglobulin G/immunology , Immunoglobulin G/isolation & purification , Lung/drug effects , Lung/virology , Neutralization Tests , Respiratory Syncytial Virus Infections/virology , Turbinates/drug effects , Turbinates/virology , Viral Fusion Proteins/immunology , Virus Replication/drug effects
12.
Front Immunol ; 11: 575074, 2020.
Article in English | MEDLINE | ID: covidwho-1256374

ABSTRACT

Combined cellular and humoral host immune response determine the clinical course of a viral infection and effectiveness of vaccination, but currently the cellular immune response cannot be measured on simple blood samples. As functional activity of immune cells is determined by coordinated activity of signaling pathways, we developed mRNA-based JAK-STAT signaling pathway activity assays to quantitatively measure the cellular immune response on Affymetrix expression microarray data of various types of blood samples from virally infected patients (influenza, RSV, dengue, yellow fever, rotavirus) or vaccinated individuals, and to determine vaccine immunogenicity. JAK-STAT1/2 pathway activity was increased in blood samples of patients with viral, but not bacterial, infection and was higher in influenza compared to RSV-infected patients, reflecting known differences in immunogenicity. High JAK-STAT3 pathway activity was associated with more severe RSV infection. In contrast to inactivated influenza virus vaccine, live yellow fever vaccine did induce JAK-STAT1/2 pathway activity in blood samples, indicating superior immunogenicity. Normal (healthy) JAK-STAT1/2 pathway activity was established, enabling assay interpretation without the need for a reference sample. The JAK-STAT pathway assays enable measurement of cellular immune response for prognosis, therapy stratification, vaccine development, and clinical testing.


Subject(s)
Dengue Virus/immunology , Immunity, Cellular , Orthomyxoviridae/immunology , Respiratory Syncytial Virus, Human/immunology , Rotavirus/immunology , Viral Vaccines/therapeutic use , Virus Diseases/immunology , Yellow fever virus/immunology , Biomarkers/blood , Dengue/blood , Dengue/immunology , Dengue/prevention & control , Dengue/virology , Dengue Vaccines/therapeutic use , Dengue Virus/pathogenicity , Diagnosis, Differential , Host-Pathogen Interactions , Humans , Immunogenicity, Vaccine , Influenza Vaccines/therapeutic use , Influenza, Human/blood , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Oligonucleotide Array Sequence Analysis , Orthomyxoviridae/pathogenicity , Predictive Value of Tests , RNA, Messenger/blood , RNA, Messenger/genetics , Respiratory Syncytial Virus Infections/blood , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/pathogenicity , Rotavirus/pathogenicity , Rotavirus Infections/blood , Rotavirus Infections/immunology , Rotavirus Infections/prevention & control , Rotavirus Infections/virology , Rotavirus Vaccines , Signal Transduction/genetics , Virus Diseases/blood , Virus Diseases/prevention & control , Virus Diseases/virology , Yellow Fever/blood , Yellow Fever/immunology , Yellow Fever/prevention & control , Yellow Fever/virology , Yellow Fever Vaccine/therapeutic use , Yellow fever virus/pathogenicity
13.
Thorax ; 76(1): 64-72, 2021 01.
Article in English | MEDLINE | ID: covidwho-978826

ABSTRACT

INTRODUCTION: Human respiratory syncytial virus (HRSV) is a common cause of respiratory tract infections (RTIs) globally and is one of the most fatal infectious diseases for infants in developing countries. Of those infected, 25%-40% aged ≤1 year develop severe lower RTIs leading to pneumonia and bronchiolitis, with ~10% requiring hospitalisation. Evidence also suggests that HRSV infection early in life is a major cause of adult asthma. There is no HRSV vaccine, and the only clinically approved treatment is immunoprophylaxis that is expensive and only moderately effective. New anti-HRSV therapeutic strategies are therefore urgently required. METHODS: It is now established that viruses require cellular ion channel functionality to infect cells. Here, we infected human lung epithelial cell lines and ex vivo human lung slices with HRSV in the presence of a defined panel of chloride (Cl-) channel modulators to investigate their role during the HRSV life-cycle. RESULTS: We demonstrate the requirement for TMEM16A, a calcium-activated Cl- channel, for HRSV infection. Time-of-addition assays revealed that the TMEM16A blockers inhibit HRSV at a postentry stage of the virus life-cycle, showing activity as a postexposure prophylaxis. Another important negative-sense RNA respiratory pathogen influenza virus was also inhibited by the TMEM16A-specific inhibitor T16Ainh-A01. DISCUSSION: These findings reveal TMEM16A as an exciting target for future host-directed antiviral therapeutics.


Subject(s)
Anoctamin-1/pharmacology , Antibodies, Viral/immunology , Neoplasm Proteins/pharmacology , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus, Human/immunology , Cells, Cultured , Humans , Lung/metabolism , Lung/pathology , Lung/virology , Respiratory Syncytial Virus Infections/metabolism , Respiratory Syncytial Virus Infections/virology
14.
J Gen Virol ; 102(1)2021 01.
Article in English | MEDLINE | ID: covidwho-873186

ABSTRACT

Although enveloped viruses canonically mediate particle entry through virus-cell fusion, certain viruses can spread by cell-cell fusion, brought about by receptor engagement and triggering of membrane-bound, viral-encoded fusion proteins on the surface of cells. The formation of pathogenic syncytia or multinucleated cells is seen in vivo, but their contribution to viral pathogenesis is poorly understood. For the negative-strand paramyxoviruses respiratory syncytial virus (RSV) and Nipah virus (NiV), cell-cell spread is highly efficient because their oligomeric fusion protein complexes are active at neutral pH. The recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has also been reported to induce syncytia formation in infected cells, with the spike protein initiating cell-cell fusion. Whilst it is well established that fusion protein-specific antibodies can block particle attachment and/or entry into the cell (canonical virus neutralization), their capacity to inhibit cell-cell fusion and the consequences of this neutralization for the control of infection are not well characterized, in part because of the lack of specific tools to assay and quantify this activity. Using an adapted bimolecular fluorescence complementation assay, based on a split GFP-Renilla luciferase reporter, we have established a micro-fusion inhibition test (mFIT) that allows the identification and quantification of these neutralizing antibodies. This assay has been optimized for high-throughput use and its applicability has been demonstrated by screening monoclonal antibody (mAb)-mediated inhibition of RSV and NiV fusion and, separately, the development of fusion-inhibitory antibodies following NiV vaccine immunization in pigs. In light of the recent emergence of coronavirus disease 2019 (COVID-19), a similar assay was developed for SARS-CoV-2 and used to screen mAbs and convalescent patient plasma for fusion-inhibitory antibodies. Using mFITs to assess antibody responses following natural infection or vaccination is favourable, as this assay can be performed entirely at low biocontainment, without the need for live virus. In addition, the repertoire of antibodies that inhibit cell-cell fusion may be different to those that inhibit particle entry, shedding light on the mechanisms underpinning antibody-mediated neutralization of viral spread.


Subject(s)
Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , COVID-19/diagnosis , Henipavirus Infections/diagnosis , High-Throughput Screening Assays , Respiratory Syncytial Virus Infections/diagnosis , Viral Fusion Proteins/antagonists & inhibitors , Animals , Antibodies, Neutralizing/isolation & purification , Antibodies, Neutralizing/metabolism , Antibodies, Viral/isolation & purification , Antibodies, Viral/metabolism , COVID-19/immunology , COVID-19/virology , Cell Fusion , Convalescence , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Henipavirus Infections/immunology , Henipavirus Infections/virology , Humans , Immune Sera/chemistry , Luciferases/genetics , Luciferases/metabolism , Models, Molecular , Nipah Virus/immunology , Nipah Virus/pathogenicity , Protein Conformation , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/immunology , Respiratory Syncytial Virus, Human/pathogenicity , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Swine , Viral Fusion Protein Inhibitors/chemistry , Viral Fusion Protein Inhibitors/metabolism , Viral Fusion Protein Inhibitors/pharmacology , Viral Fusion Proteins/genetics , Viral Fusion Proteins/immunology
15.
Influenza Other Respir Viruses ; 14(6): 747-756, 2020 11.
Article in English | MEDLINE | ID: covidwho-713679

ABSTRACT

The controlled human infection model and specifically the human viral challenge model are not dissimilar to standard clinical trials while adding another layer of complexity and safety considerations. The models deliberately infect volunteers, with an infectious challenge agent to determine the effect of the infection and the potential benefits of the experimental interventions. The human viral challenge model studies can shorten the time to assess the efficacy of a new vaccine or treatment by combining this with the assessment of safety. The newly emerging SARS-CoV-2 virus is highly contagious, and an urgent race is on to develop a new vaccine against this virus in a timeframe never attempted before. The use of the human viral challenge model has been proposed to accelerate the development of the vaccine. In the early 2000s, the authors successfully developed a pathogenic human viral challenge model for another virus for which there was no effective treatment and established it to evaluate potential therapies and vaccines against respiratory syncytial virus. Experience gained in the development of that model can help with the development of a COVID-19 HVCM and the authors describe it here.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/pathology , Models, Biological , Pneumonia, Viral/pathology , Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Humans , Pandemics/prevention & control , Patient Selection , Pneumonia, Viral/drug therapy , Pneumonia, Viral/immunology , Pneumonia, Viral/prevention & control , Respiratory Syncytial Virus, Human/drug effects , Respiratory Syncytial Virus, Human/immunology , Respiratory Syncytial Virus, Human/pathogenicity , SARS-CoV-2 , Safety , Viral Load/drug effects , Viral Vaccines/adverse effects , Viral Vaccines/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL